FRAMEWORK DEVELOPMENT AND MEASUREMENT OF OPERATOR WORKLOAD USING MODIFIED COOPER HARPER SCALE METHOD (CASE STUDY IN PT SINAR TERANG LOGAMJAYA BANDUNG WEST JAVA)

Rizki Wahyuniardi¹, M. Yani Syafei², Wahyukaton³

Industrial Engineering Department, Pasundan University, Bandung, Indonesia
¹rizki.wahyuniardi@unpas.ac.id, ²yanisyafei@gmail.com ³whyne4ever@gmail.com

ABSTRACT

PT Sinar Terang Logamjaya is an automotive components manufacturer for motorcycles and car. The industry is dealing with materials from iron plate and process with sheet metal shaping techniques to produce products. One of the product is a motorcycle component, is called Oil Lock Collar. This product is been made in large quantities to meet demands. Hence, it is resulted in the workload experienced by workers and will touch on the productivity of workers.

Modified Cooper Harper Scale (MCH) is a 10-point scale that was originally produced to assess the subjective workload of airplane pilots. The original index probes overall ease of handling of the selected task or required operation and asks more specific questions related to the aircraft characteristics, the demands on the pilot, and finally, the pilot rating. This method is fit to evaluate work activities with the manual controls. MCH scale decision tree shaped with a rating scale from very easy (point 1) to very difficult (10 points).

This study has two purposes. First was modified version of MCH scale which was used to measure the subjective workload of performing in industrial process. The second purpose was concerned with the categorizing task activities into under load category, optimal category, or overload category.

Based on the framework that has been built, 8 operators were selected and they have to fill up the form to be assessed by MCH to obtain operator feel about their tasks. The results of the data processing indicate that 12 task activities were under load categorized, 5 task activities were optimal category and 11 task activities were overload category. This result can be useful for the industry to change work processes or maximum demand of products.

Keywords: Subjective Workload, Framework, Measurement, Cooper Harper Scale

1. INTRODUCTION

1.1 Introduction

Oil Lock Collar is one of high demand products, and its function is to regulate oil to lubricate shock absorber for automatic motorcycle. And it is ordered by PT. Honda Astra Motor, PT. Federal Motor, PT. Indomobil Suzuki International. And since this parts is highly demanded, so that it will affect the company to manage sources to meet the demand. Based on data collected on December 2012 – March 2013, there were reject average 7.20% as shown on table 1.

<table>
<thead>
<tr>
<th>Month</th>
<th>Productions (unit)</th>
<th>Total Reject (unit)</th>
<th>Passed QC (unit)</th>
<th>% Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec '12</td>
<td>135,945</td>
<td>6,045</td>
<td>129,900</td>
<td>4.45</td>
</tr>
<tr>
<td>Jan '13</td>
<td>145,881</td>
<td>7,917</td>
<td>137,964</td>
<td>5.43</td>
</tr>
<tr>
<td>Feb '13</td>
<td>136,676</td>
<td>16,152</td>
<td>120,524</td>
<td>11.82</td>
</tr>
<tr>
<td>Mar '13</td>
<td>127,419</td>
<td>9,049</td>
<td>118,370</td>
<td>7.10</td>
</tr>
</tbody>
</table>

Table 1. Products and Reject Products Oil Lock Collar (December 2012 – March 2013)

Source: PT. Sinar Terang Logamjaya, 2013

The reject percentage was the problem for the company to meet the high demand. The biggest reject percentage was on February 2012 (11.82%) and still continued to March 2013 (7.10%). These high reject percentage was identified due to a high operator workload on shop floor.

Workload is a body ability accepting the work, this could be physical workload and psychology/mentally workload. Physical workload could be heavy lifting, maintaining,
or pushing. While psychology workload could be skill level and work performance which owned by person to another person (Manuaba, 2000). Cooper (1983), the over workload is a stress source and will causing productivity decline and work accident.

To maintain company productivity, in this research was done by calculating physical workload and psychology workload to operators who took handle on Oil Lock Collar production. When the workload was being identified then the company will be able to take proper actions.

1.2 Problem Identification

Oil Lock Collar production was done by 8 operators with 28 task activities. This research will conducting framework design and workload measurement for Oil Lock Collar operators. Using approximation proposed by Modified Cooper Harper Scale (MCHS) (Wierwille and Casali, 1983). Wierelli dan Cassali (1983) in Gawron (2000) stated that Cooper Harper Scale is approxiamation that consider scale combination between physical and mental workload. The scale will look like a tree decision.

Wierwille and Casali (1986) also stated that this paroximation is easy to conduct, efficient, and fit to variation tasks especially to the man-machine system that need perception, monitoring, evaluation, communication and man decision making. Some researchers were Cummings, Myers dan Stacey (2006) and Donmez et. al (2008), both were conducted research on interaction of pilot and monitor inside a plane.

1.3 Objectives

To have a result of,

1. Framework of workload measurement.
2. Operator physical workload and mentally workload.

2. THEORITICAL BACKGROUND

Subjective Mental Workload Measurements

1. NASA-TLX, was developed by NASA Ames Research Center USA, is a multi-dimensional rating procedure, that deviding workload into six subscale loading.

2. SWAT was developed by Reid and Nygran at Amstrong Medical Research Laboratory, based on kinjoin scale. SWAT was made as only 3 descriptors on each dimension.

3. Task Difficulty Scale, was used by AIRBUS Co., in French to test static workload for new aircraft model which were to be certified.

4. Modified Cooper Harper Scale, was first applied on managing air plane quality of pilot’s decision to airborne the air plane. This method consist of ten rating numbers from the worst to the best one, and the possibility of managing the case. Cooper Harper Scale proposed ten questions to evaluator, which it has to show the best or approaching the best of statements for air plane handling quality. The MCH is suitable for evaluating task with perception, meditation, and communication. The application with decision tree on subjective scale measurement will reduce tight structure variability, while bipolar scale usually leaves to many open scale for assessment and operator selection variability. However, a decision tree will only provide ordinal scale

3. METHODOLOGY

Developing Measurement Framework
Determining a Test For Adequacy for Selected Task or Required Operator

There are three decision statements are:

1. Task statement decision on very heavy workload

This decision was measuring task with very heavy workload category, a decision beyond this category will be continued into point number 2.

2. Task statement decision on heavy workload

This decision was measuring task with heavy workload category, a decision beyond this category will be continued into point number 3.

3. Task statement decision on fair workload

This decision was measuring task with fair workload category, a decision
beyond this category will be categorized as low workload.

Figure 1 shows statements line of testing statements or adequacy operations. Figure 2 shows task characteristics

Figure 1. Testing Statement of Adequacy for Selected Task or Required Operator

Determining Task Characteristics
Task characteristic is a characteristic of task based on workload categories which are very heavy, heavy fair dan low workload. While the step of categorizing as follows:

1. **Low Task**, divided into 3 categories, which are very easy or most adequate, easy or adequate, and normal or low difficulty level.
2. **Fair Task**, divided into 3 categories, which are low difficulty level but disturbing task, fair difficulty level, and almost heavy difficulty level.
3. **Heavy Task**, divided into 3 categories, which are less heavy, fair heavy, and heavy.
4. **Very Heavy Task**, there is only one category, which is very heavy.

Figure 2. Task Characteristics

Determining Operator Required on Selecting Adequacy Tasks
Fulfillment of operators on selecting adequacy tasks is an adequacy operator activities to the tasks, as follows,

1. **Low Task**, with the characteristics are **very easy or most adequacy**, so that operator’s requirement is very easy to be achieved and does not need task changing.
2. **Low Task**, with the characteristics are **fair or low difficulty**, so that operator’s requirement is very easy to be achieved and does not need task changing.
3. **Low Task**, with the characteristics are **easy or adequacy**, so that operator’s requirement is fair to be achieved by operators.
4. **Fair Task**, with the characteristics are **low but not disturbing performance**, so that operator’s requirement is need low effort to achieve adequate performance.
5. **Fair Task**, with the characteristics are **fair**, so that operator’s requirement is fair effort to achieve adequate performance.
6. **Fair Task**, with the characteristics are **close to heavy**, so that operator’s requirement is need high effort to achieve adequate performance.
7. **Heavy Task**, with the characteristics are **less heavy**, so that operator’s requirement is need maximum effort to achieve adequate performance and high workload level.

8. **Heavy Task**, with the characteristics are **heavy**, so that operator’s requirement is need maximum effort to achieve adequate performance and high workload level.

9. **Heavy Task**, with the characteristics are **heavy**, so that operator’s requirement is need maximum effort to achieve adequate performance and heavy workload level.

10. **Very Heavy Task** with the characteristics are **heavy**, so that operator’s requirement is a task with majority failure.

Workload Assessment

Determining Operator Workload Category to a Task Characteristic

Rating is given from 1 to 10, and it is adjusted to the categories for the operator. Figure 3 shows workload categories. Steps of workload measurement based on Modified Cooper Harper Scale method is shown on Figure 4.

Determining Weighted on Operator’s Workload

The next step of Cooper Harper Scale method is determining a weight on workload to operator based on a judgment from researcher by this statement as follows:

1. **Low Task Category**, with the task characteristic **very easy/most adequate**, the workload weight is less than 10% (≤ 10%).

2. **Low Task Category**, with the task characteristic **easy/adequate**, the workload weight is between 11% up to 20% (11% - 20%).

3. **Low Task Category**, with the task characteristic **fair/low difficulty**, the workload weight is between 21% up to 40% (21% - 40%).

4. **Fair Task Category**, with the characteristic **low difficulty but disturbing performance**, the workload weight is between 41% up to 45% (41% - 45%).

5. **Fair Task Category**, with the characteristic **fair difficulty**, the workload weight is between 46 % sampai dengan 55% (46% - 55%).

6. **Fair Task Category**, with the characteristic **fair difficulty**, the workload weight is between 56 % up to 60% (56% - 60%).
7. **Heavy Task Category**, with the characteristic **less heavy**, the workload weight is between 61 % up to 65 % (61% - 65%).

8. **Heavy Task Category**, with the characteristic **fair heavy**, the workload weight is between 66 % up to 75 % (66% - 75%).

9. **Heavy Task Category**, with the characteristic **heavy**, the workload weight is between 76 % up to 80 % (76 % - 80 %).

10. **Very Heavy Task Category**, with the characteristic **very heavy**, the workload weight is between 81 % up to 100 % (81 % - 100 %).

4. **RESULT**

 Workload Measurement Framework

 Based on identification and interview with the company, workload measurement framework is shown on Table 2.

 Physical Workload and Mental Operator

 After framework is done by Modified Cooper Harper Scale Method, then the workload measurement of Oil Lock Collar production process is conducted to all activities. The result is shown on Table 3.

<table>
<thead>
<tr>
<th>Process</th>
<th>No.</th>
<th>Activity</th>
<th>Number of Process Activity</th>
<th>Number of Respondens (operators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank Drawing</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Drawing</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Expand 1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Expand 2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Pierching</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

5. **CONCLUSIONS**

Conclusion can be drawn as follows,

1. Workload Measurement Framework using MCS is achieved by task process and information from company and operators.
2. Based on Workload Measurement Framework, 12 activities are under load, 5 activities are optimal load, and 11 activities are overload.

6. **REFERENCES**

 (a) Manuaba, A. 2000. Research and Application of Ergonomics in Developing Countries, with Special Reference to Indonesia. *Jurnal Ergonomi Indonesia* 1 (1-6), 24-30

 (b) Cooper and Sutherland, 1983. *Stress Prevention in the Offshore Oil and Gas Exploration and Productivity Industry*, University of Manchester, United Kingdom

AUTHOR BIOGRAPHIES

Rizki Wahyuniardi
is a lecturer in Industrial Engineering Department, Pasundan University. I reach my bachelor degree on Industrial Engineering at Pasundan University at 1997, and Master Degree on Industrial Engineering at Bandung Institute of Technology at 2000. My research area is related to Production System and Ergonomic. My email address rizki.wahyuniardi@unpas.ac.id

M. Yani Syafei is a lecturer in Department of Industrial Engineering, Faculty of Engineering, Pasundan University, Bandung. He received his Master of Transportation from Institut Technology Bandung in 1993, and his Doctor of Economic (Management Department) from Padjadjaran University, Bandung, in 2007. His research interests are in the area of Design Product, Work System Design, Work Safety & Health, and Ergonomics. Because of his research interests in them, so that he become a Professor of Work System Design & Ergonomics in 2008. His email address is yanisyafei@gmail.com.

Wahyukaton, is a lecturer in Industrial Engineering Department, Pasundan University. I reach my bachelor degree on Industrial Engineering at Pasundan University at 1995, and Master Degree on Industrial Engineering at Bandung Institute of Technology at 2001. My research area is related to Statistic, Quality Control, and Ergonomic. My email address whyne4ever@gmail.com